Global boundedness of solutions to a parabolic–parabolic chemotaxis system with local sensing in higher dimensions

نویسندگان

چکیده

This paper deals with classical solutions to the parabolic-parabolic system \begin{align*} \begin{cases} u_t=\Delta (\gamma (v) u ) &\mathrm{in}\ \Omega\times(0,\infty), \\[1mm] v_t=\Delta v - + \displaystyle \frac{\partial u}{\partial \nu} = v}{\partial 0 &\mathrm{on}\ \partial\Omega \times (0,\infty), u(\cdot,0)=u_0, \ v(\cdot,0)=v_0 \Omega, \end{cases} \end{align*} where $\Omega$ is a smooth bounded domain in $\mathbf{R}^n$($n \geq 3$), $\gamma (v)=v^{-k}$ ($k>0$) and initial data $(u_0,v_0)$ positive regular. has striking features similar those of logarithmic Keller--Segel system. It established that exist globally time remain uniformly if $k \in (0,n/(n-2))$, independently magnitude mass. constant $n/(n-2)$ conjectured as optimal range guaranteeing global existence boundedness corresponding We will derive sufficient estimates for through some single evolution equation auxiliary function satisfies. The cornerstone analysis refined comparison estimate solutions, which enables us control nonlinearity equation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global solutions to a chemotaxis system with non-diffusive memory

In this article, a existence theorem of global solutions with small initial data belonging to L ∩ L, (n < p ≤ ∞) for a chemotaxis system are given on the whole space R, n ≥ 3. In the case p = ∞, our global solution is integrable with respect to the space variable on some time interval, and then conserves the mass for a short time, at least. The system consists of a chemotaxis equation with a lo...

متن کامل

Global Solutions for a Hyperbolic-parabolic System of Chemotaxis

We study a hyperbolic-parabolic model of chemotaxis in dimensions one and two. In particular, we prove the global existence of classical solutions in certain dissipation regimes.

متن کامل

Global and Local Boundedness of Polish Groups

We present a comprehensive theory of boundedness properties for Polish groups developed with a main focus on Roelcke precompactness (precompactness of the lower uniformity) and Property (OB) (boundedness of all isometric actions on separable metric spaces). In particular, these properties are characterised by the orbit structure of isometric or continuous affine representations on separable Ban...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nonlinearity

سال: 2022

ISSN: ['0951-7715', '1361-6544']

DOI: https://doi.org/10.1088/1361-6544/ac6659